

Department of Mechanical Engineering Bangladesh University of Engineering and Technology

> ME 310 Thermo-Fluid System Design 1.5 Credit Hours

INTRODUCTORY CLASS

COURSE OBJECTIVES

The design, operation and performance of mechanical equipment commonly used in thermo-fluid systems will be reviewed.

•Methods in system simulation and optimization will be introduced.

• Prior courses in **Thermodynamics**, **Fluid Mechanics and Heat Transfer** will be integrated.

•Based on the knowledge gained in the relevant courses, the students will need to make a group effort for a thermofluid system design.

COURSE OUTCOME

• This design course will give the students a **meaningful design experience** making the use of the knowledge gained in previous lectures/courses on Heat transfer, Fluid mechanics, Thermodynamics, and Economics.

The students will learn to use **different software** (AutoCAD/SOLIDWORKS, 3E Plus[®], HTRI and more) for the design and analysis **in addition to technical calculations on paper**.

• The students will learn to present their design

• The students will learn how to write a technical report detailing both technical and non-technical aspects.

ENGINEERING DESIGN—DEFINITION

Process of devising a system, subsystem, component, or process to meet desired needs

A decision making process (often iterative) in which basic science, mathematics and engineering sciences are applied to convert resources optimally to meet a stated objective

TYPES OF DESIGN IN THERMO-FLUID SCIENCE

Process Design: The manipulation of physical and/or chemical processes to meet desired needs.

Example: (a) Introduce boiling or condensation to increase heat transfer rates.

System Design: The process of defining the components and their assembly to function to meet a specified requirement.

Examples: (a) Steam turbine power plant system consisting of turbines, pumps, pipes, and heat exchangers. (b) Hot water heating system, complete with boilers.

Subsystem Design: The process of defining and assembling a small group of components to do a specified function.

Example: Pump/piping system of a large power plant. The pump/piping system is a subsystem of the larger power plant system used to transport water to and from the boiler or steam generator.

Component Design: Development of a piece of equipment or device.

DIFFERENCE BETWEEN DESIGN AND ANALYSIS

Analysis: Application of fundamental principles to a well-defined problem. All supporting information is normally provided, and one closedended solution is possible.

Design: Application of fundamental principles to an undefined, open problem. All supporting information may not be available and assumptions may need to be made. Several alternatives may be possible. **No single correct answer exists.**

SELECTION VERSUS DESIGN

Selection: Largely involves determining the specifications of the item from the requirement for the given task. Based on the specifications, a choice is made from the various types of items available with different ratings or features.

Design: Application of fundamental principles to an undefined, open problem. All supporting information may not be available and assumptions may need to be made. Several alternatives may be possible. No single correct answer exists.

Selection and design is frequently employed together in the development of a system

CLASSIFICATION OF THE DESIGN

Modification of an existing device for (a) cost reduction

- (b) improved performance and/or efficiency
- (c) satisfy government codes and standards
- (d) satisfy customer/client preferences
- Selection of existing components for the design of a subsystem or a complete system.
- Creation of a new device or system.

DESIGN PARAMETERS:

- Materials, cost and economics
- Safety and reliability
- Choice and availability
- Optimization
- Cyclic service
- Codes and Regulations

CODES AND STANDARD

A standard is a set of technical definitions and guidelines that function as instructions for designers, manufacturers, operators, or users of equipment. Standards do not have the force of law, and are voluntary guidelines. A standard becomes a code when it has been adopted by one or more government agencies and is enforced by law, or when it has been incorporated into a business contract. International Organization for Standardization (ISO)

American Petroleum Institute (API)

American Society for Testing and Materials (ASTM)

Bangladesh National Building Code (BNBC)

Uniform Mechanical Code (by IAPMO)

Uniform Plumbing Code (by IAPMO)

GENERAL STEPS IN DESIGN

OPTIMIZATION

It is not enough to obtain a workable system that performs the desired tasks and meet the given constraints.

The design that serves the purpose may not be the best. The definition of best is based on cost, performance, efficiency and some other measures.

WHAT IS THERMAL/FLUID DESIGN

- Implies calculations and activities based on principles of thermodynamics, heat transfer and fluid mechanics.
- Components fans, pumps, compressors, engines, heat and mass exchangers, etc.
- Thermal systems generally use a large number of components.
- Processes usually involve fluid motion.

TYPICAL THERMO-FLUID SYSTEMS

Heat exchangers

Two phase heat transfer equipment:

- Boiler
- Evaporator
- Condenser
- Cooling tower

Thermal systems with internal heat source

TOPICAL COVERAGE

- **Engineering Design:** defining a need, specifying success criteria, identifying alternatives, analysis and optimization, design of experiments, the design report, team work.
- **Thermal Science Review:** thermodynamic fundamentals, fluid properties and basic equations, heat transfer fundamentals.
- **Piping Systems:** Piping and tubing standards, friction factors, pipe roughness, minor losses, major losses, valves, system behavior, measurement of flow rate and pressure drop.

TOPICAL COVERAGE

- Heat Exchangers: method of analysis, LMTD, heat transfer in a tube, double piped heat exchangers, shell and tube, cross flow, heat recovery, system design.
- Economic analysis: time value of money, comparing alternatives, depreciation and taxes.
- **Optimization:** Introduction and survey of mathematical methods of design optimization.
- **Team Skills:** Effective leadership methods, Efficient meeting skills, Conflict resolution, decision making methods, aspects of organizational behavior.

HOW ARE WE GOING TO DO ALL THAT?

You will have to do a design project (group wise)

Your final grade will be a combination of group and individual grades of this project, class performance, assignment, final quiz, presentation etc.

OVERVIEW OF THE DESIGN PROCESS

- * Concept
- Design
- Calculation
- Component selection
- Specification preparation
- Design Report & Presentation

Design Problem:

 Design a shell and tube heat exchanger for this service.

Given data:

Hot fluid inlet temperature $(T_1)=160^{\circ}F$ Hot fluid outlet temperature $(T_2) = 120^{\circ}F$ Cold fluid inlet temperature $(t_1) = 75^{\circ}F$ Cold fluid outlet temperature $(t_2) = 120^{\circ}F$ Fouling factor of hot fluid $(R_{dg}) = 0.0005$ (for gasoline) Fouling factor of cold fluid $(R_{dk}) = 0.001$ (for kerosene) P_{inlet} (for hot fluid) = 50 psia P_{inlet} (for cold fluid) = 50 psia Δp_{max} (for hot fluid) = 7 psi Δp_{max} (for cold fluid) = 10 psia Mass flow rate of cold fluid $(m_k) = 150000 \text{ lb.h}^{-1}$

Design/Drawing of the component/system:

Table: Material Selection Decision Matrix

	Heat Resistance	Inexpensive	Workability	Corrosion Resistance	Availability	Total (High Temp)	Total (Low Temp)
Category Weight	x5	х3	x2	x1 for low temp, x2 for high temp	x2		
Aluminum	1	5	1	4	5	40	31
Carbon Steel	2	5	4	1	5	45	34
Stainless Steel 304	4	3	3	4	3	49	25
Stainless Steel 316	4	2	3	4	2	44	20
Titanium	5	1	2	5	1	44	14

Calculation:

Natural Convection Calculations							
Initial Final							
gβρ^2/μ^2	1.75E+07	5.70E+07					
N.Gr	6.06E+10	8.46E+10					
N.Pr	0.708	0.708					
Gr*Pr	4.29E+10	6.00E+10					
	Vertical Cylinders						
h (W/m^2*K) 6.936 5.229							
q (W)	393	127					
н	orizontal Cylinder	s					
h (W/m^2*K)	h (W/m^2*K) 6.936 5.229						
q (W)	q (W) 393 127						

Kanice Stell and Take Fest Exhange File Tools Hilp

E: Canditions for Shell-Side Ruit		Shell-Side (S-S) Ruid Rew	
Red	Water Vapor (H2O)		
Men How Rate, 10/bec	6		E-00 ig-test
inst Terperature K	423.15	0.00 sVsec 0.00 cm/h	
Initi Pressure, Pa	1000000	- E 50 6091.1	1
Dimary local	0.3562	hist Tempre - 421 5 K	
Microsofte Age/Im/Tesch	ė.	Odet Tenove 277.15K	
Sectories Jilg10	2014	Net Outlet Nozzle Vetoch CO	à
D Conditions for Tube-Stde Huid		Her Calle Scale Heods) CS	7
Fud	Water Liquid (190)	Stell-Side Fluid Proporties	
Max Rev Rate kg/sec	15	Rid Wate Vipor	¢
rist Temperature n	277.15	Noteby 1340E-005	
Inel Fressure, Fa	101325	Specific Heat 2014.00 J/9	
Canada, Appled	189.2	and the second second	
Victorianto, Agrice Carchi	0.901		i.
Gentle lear 19250	432	Tube Side (T-S) Fluid Row	
B Heat Exchanger Construction		Mes Roy Fate 15.004g/bit	2
Sel-SteFud Nizle.mn	103	CO2 n/lac	1
Sel Diaveler, ter	603	54.10 pcm/h	ie.
Sket Lengh, mm	2000	Wooty in Tube C 80 n lesc	
Shet Outer Surface w?	10.3327	Renock lumber 10491	
Tabe-Side Rud Nozale, mm	103	hid Tenpes 277.5K	
Tube Invier Drameter, met	12	Outlet Tambre 277.15 K	
Tube Outer Diameter, mm	15		
Tube Lendth per Falls, for	4115	Fittion Faster 20412	
Number of Passes	1	Pressure Drop : 600515 Par	
Namber of Tubes	151		
Tibes Ouer Surface.m*	0	Her Cute Numle Venuel 11	p,
Pox Roughness, nm	0.1		
Fligt Transfer: WOX'm'S	2290	Tube-Side Fluid Properties Fluid Witter Louid	i.
E Sel Instation		Denety 995-20kp/m	- 20
Thermal Conductoria, W.95%)	119	Nexety 1.0030E-003	
Thickness on	10	Specific Heat 4112200 1/9	ų,
Heat Transfer W/X0wh	25		
Arbiert Terceralue, K	303.15	Heat Exchanged between tw	2
El Shell-Side Heater	10040	Her Exchanged	
Plater Pover W	0	2000 State	
APAC AND AND APAC APAC APAC APAC APAC APAC APAC APA	372	Remai Broctiveness of He Ifectiveness 1000	*
Density, kg/m ¹			
The sitered densities of game should be a	27nmm.Mit		

(candraid re¹⁷ per hour) Cirel million (420) (g/(m*tec) 10 istandard infloer four-Distriction of H201 Res (In Text) ri Ekaida st Exchanger

Catulate

second procession

Heat Exchanger configuration

Meshing

Ten²perature distribution along the shell and tubes

Velocity distribution along the shell and tubes

Heat Exchanger Specification Sheet

HTRI	Page 1 SI Units							
				Job No.				
Customer				Reference No.				
Address				Proposal No.				
Plant Location				Date	11/10/2015	Rev		
Service of Unit				Item No.				
Size 154.050) x 1037.97 mm	n Type BEU	Horz.	Connected In	1 Parallel	1 Series		
Surf/Unit (Gross/Eff) 0.70 /	0.68 m2	Shell/Unit	1	Surf/Shell (Gros	ss/Eff) 0.70 / 0.68 m2			
		PERFORMANC	E OF ON	EUNIT				
Fluid Allocation		She	l Side		Tub	e Side		
Fluid Name		hot water			cold water			
Fluid Quantity, Total	kg/hr	108	0.01		27	11.89		
Vapor (In/Out)								
Liquid		1080.01		1080.01	2711.89	2711.89		
Steam								
Water		1080.01		1080.01	2711.89	2711.89		
Noncondensables								
Temperature (In/Out)	С	90.00		70.84	30.00	37.66		
Specific Gravity		0.9722		0.9722	0.9844	0.9844		
Viscosity	mN-s/m2	0.3540		0.3540	0.7250	0.7250		
Molecular Weight, Vapor								
Molecular Weight, Nonconde	ensables							
Specific Heat	kJ/kg-C	4.1964		4.1964	4.1781	4.1781		
Thermal Conductivity	W/m-C	0.6702		0.6702	0.6232	0.6232		
Latent Heat	kJ/kg							
Inlet Pressure	kPa	100.001			100.001			
Velocity	m/s	9.57	'2e-2		0.60			
Pressure Drop, Allow/Calc	kPa	100.002		0.563	100.002	3.021		
Fouling Resistance (min)	m2-K/W	0.000200			0.000200			
Heat Exchanged W	24116.9		MTD (C	orrected)	45.0 C			
Transfer Rate, Service	781.91	W/m2-K Clean	1	199.87 W/m2-K	Actual	787.39 W/m2-K 24		

LET'S GO THROUGH AN EXAMPLE!

Designing a Heat Exchanger

Design a shell and tube heat exchanger that will remove 44.6 kilowatts from the process steam.

Cooling water

- Inlet temperature 30 °C
- Exit temperature

Process steam

- Inlet temperature of steam 130 deg-C
- Inlet pressure 3.5 bar

DESIGN REQUIREMENTS

Meet 44.6 kilowatts of heat transfer

Minimize tube and shell side pressure drops

Minimize cost

- Heat exchanger weight
- Selected material

Minimize the heat exchanger volume

CALCULATION

Case	Over Design	Duty (MegaWatts)	Shell DP (kPa)	Tube DP (kPa)	Shell ID (mm)	Baffle Spacing (mm)	Tube Length (m)	Tube Dia. (mm)	Tube Pitch Ratio	Cross Passes
1	463	0.0446	0.044	10.086	152.400	150.000	0.762	12.700	1.5	3
2	467	0.0446	0.043	10.068	152.400	225.000	0.762	12.700	1.5	3
3	244	0.0446	0.040	5.798	152.400	150.000	0.762	16.850	1.5	3
4	246	0.0446	0.040	5.791	152.400	225.000	0.762	16.850	1.5	3
5	98	0.0446	0.038	6.637	152.400	150.000	0.762	21.000	1.5	3
6	100	0.0446	0.038	6.631	152.400	225.000	0.762	21.000	1.5	3

CALCULATION

Optimization

CONCLUSIONS

Using the MATLAB and other tools provided, the original design was optimized in order to satisfy the design requirements.

TEMA type	AEL					
Shell diameter	152.400 mm					
Outer tube limit	132.675 mm					
Height under inlet nozzle	23.997 mm					
Height under outlet nozzle	23.997 mm					
Tube type	Plain					
Tube diameter	16.850 mm					
Tube pitch	25.275 mm					
Tube layout angle	30					
Number of tubes (specified)) 18					
Number of tubes (calculate	d) 18					
Number of tie rods	4					
Number of seal strip pairs	1					
Number of passes	1					
Baffle cut % diameter	40					
TUBEPASS DETAILS						
Pass Rows Tubes	Plugged					
1 5 22	0					
SYMBOL LEGEND O Tube Plugged tube Tie rod Impingement rod Dummy tube Seal rod Seal strip/Skid bar						

ASSIGNMENT

Make a 3D model of the heat exchanger in solid works

Thank You!